
The wA11y Developer Toolkit
The essential stack for building inclusive products.

Accessibility isn't optional4it's the foundation of great product
development.

Use this toolkit during local development, code review,
QA, and before release

30%
Automated Detection

What tools can find

70%
Manual Testing

What humans must verify

Part 1: Essential Automated Tools
The Daily Drivers

These browser extensions form the backbone of your automated accessibility testing workflow. Each tool catches
different issues, so using them in combination maximizes coverage.

Browser Extensions

axe DevTools [Freemium] The industry standard for automated testing. Integrates
seamlessly with Chrome DevTools and provides detailed
remediation guidance.

WAVE [Free] Visual feedback tool that identifies errors directly in the
browser with inline icons and color-coded alerts.

Accessibility Insights [Free] Guided and automated assessment tool by Microsoft. Excellent
for structured WCAG compliance testing.

Google Lighthouse [Free] Built-in audit tool in Chrome DevTools. Provides accessibility
scores alongside performance and SEO metrics.

https://chromewebstore.google.com/detail/axe-devtools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://wave.webaim.org/
https://accessibilityinsights.io/
https://developer.chrome.com/docs/lighthouse/overview

Color & Code Utilities

Beyond browser extensions, these specialized tools ensure your code and designs meet accessibility standards from
the start.

WebAIM Contrast Checker [Free] The go-to for checking WCAG color ratios. Simple interface for
testing text and background combinations.

Stark [Freemium] Plugin for Figma and Sketch to check contrast and simulate
vision conditions during the design phase.

eslint-plugin-jsx-a11y [Free] Static AST checker for React developers. Catches accessibility
issues in JSX before code reaches production.

https://webaim.org/resources/contrastchecker/
https://getstark.co/
https://github.com/jsx-eslint

Screen Readers & Documentation
Testing Software

To truly understand user experience, you must test with the same tools your users rely on. Here are the essential
screen readers across platforms.

NVDA

[Free]

The most popular open-source screen reader for
Windows. Essential for testing desktop web
applications.

nvaccess.org

VoiceOver

[Free]

Built-in to all Apple devices (macOS/iOS). Test both
desktop Safari and mobile experiences.

apple.com/accessibility

TalkBack

[Free]

Built-in to Android devices. Critical for mobile app
and responsive web testing.

google.com/accessibility

JAWS

[Paid]

Enterprise standard screen reader. Widely used in
corporate and government environments.

freedomscientific.com

https://www.nvaccess.org/download/
https://www.apple.com/accessibility/vision/
https://support.google.com/accessibility/android/answer/6283677
https://freedomscientific.com/

Essential Bookmarks

Keep these authoritative resources handy for standards, best
practices, and technical implementation guidance.

W3C WAI

Official standards body
for web accessibility.
Home to WCAG guidelines
and ARIA specifications.

w3.org/WAI

The A11y Project

Beginner-friendly guides
and checklists. Perfect
for teams new to
accessibility or looking
for quick reference.

a11yproject.com

MDN Web Docs

Best technical
documentation for ARIA,
semantic HTML, and
accessibility APIs with
clear code examples.

developer.mozilla.org

https://www.w3.org/WAI/
https://www.a11yproject.com/
https://developer.mozilla.org/

Part 2: Manual Testing Checklist
The "Human" Check (The Other 70%)

If you can't use it without a mouse, it's not done.

Automated tools are powerful, but they can't evaluate user experience. Manual testing reveals the barriers that tools
miss4and those barriers affect real people trying to use your product.

ARIA Usage Guidance

Prefer Native
HTML

Use semantic
elements first

Test for
Accessibility

Use screen
readers and tools

When HTML
Insufficient
Add ARIA to
convey role

Keep ARIA
Minimal

Only add necessary
attributes

Keyboard Testing (No Mouse)

Unplug your mouse and navigate your entire application using only Tab, Shift+Tab, Enter, Space, and Arrow keys. If
you get stuck or lost, your users will too.

Visual Focus

Can you always see where you are? Ensure focus indicators are visible and never suppressed with outline:
none without replacement.

Logical Order

Does tab order match visual reading order? Content should flow naturally from top to bottom, left to right.

No Traps

Can you tab in and out of every widget? Test modals, carousels, maps, and custom components carefully.

Interaction

Can you trigger buttons and menus with Enter or Space? All interactive elements must respond to keyboard
input.

Skip Link

Is there a "Skip to Content" link on the first tab? This lets keyboard users bypass repetitive navigation.

Screen Reader & Visual Checks

Screen Reader Basics

Turn on a screen reader and navigate your site with your
eyes closed. Listen critically to what's announced and
how information is structured.

Headings: Do you skip levels (H1 to H4)? Are visual
headings coded as actual heading elements?

Links: Do links make sense out of context? Avoid
vague phrases like "Click Here" or "Read More."

Images: Do decorative images stay silent? Do
meaningful images have descriptive alt text?

Forms: Do fields announce their label and required
status clearly?

Zoom & Reflow

Test how your interface adapts to users who need
larger text or different viewport sizes.

200% Zoom: Is text readable without horizontal
scrolling? Content should reflow naturally.

400% (Mobile): Does the site reflow into a single
column? No content should be hidden or cut off.

Color: Are error messages conveyed by more than
just color? Include text, icons, or other visual
indicators.

The "Gotchas"
What Automated Tools Often Miss

These nuanced issues separate adequate accessibility from excellent user experience. Automated scanners can't
evaluate context, clarity, or user flow4which is why manual testing is critical.

Focus Not Obscured (2.4.11
AA)

Ensure sticky
headers/footers/banners do
not fully cover focused
elements. Use scroll-margin-

top/scroll-padding-top equal

to sticky height; make banners
modal/dismissible.

Test: Tab through with sticky
UI active (i.e. sticky headers
and overlays); confirm focused
control is at least partly visible.

Accessible Authentication
(3.3.8 AA)

Allow password managers &
copy0paste; provide
passkeys/biometrics/magic
links.

Test: Complete login without
memory/transcription; verify
managers fill fields; OTP fields
allow paste.

Consistent Help (3.2.6 A)

Place Help/Contact
consistently (same DOM order
and landmark).

Test: Crawl a sample of pages;
check stable placement/order.

Redundant Entry (3.3.7 A)

In multi0step flows, prefill or let
users select previously entered
info; allow <same as X=.

Test: Confirm no unnecessary
retyping; verify security
exceptions only.

Target Size Minimum (2.5.8
AA)

Document the 24×24
requirement and exceptions;
keep your 44×44 as preferred.

Test: Sample buttons/links on
mobile and desktop; confirm
size or spacing equivalence.

The "Gotchas"
What Tools Often Miss

These are the nuanced issues that separate adequate accessibility from excellent user experience. Automated
scanners can't evaluate context, clarity, or user flow.

Error Messages

Are they helpful and specific?
Compare "Password must be at
least 8 characters with one
uppercase letter" to "Error."
Which one helps users
succeed?

Focus Management

Does focus return to the trigger
button when a modal closes? Or
does it jump back to the top of
the page, disorienting the user?

Dynamic Content

Are "toast" messages and live
updates announced
immediately to screen reader
users? Use ARIA live regions
appropriately.

Mobile Accessibility Checklist

Testing beyond desktop: Ensuring your mobile experience is accessible for all users, including those relying on touch
and assistive technologies.

Touch Targets & Gestures

Touch targets are at least
44×44 CSS pixels

No critical actions rely on
swipe-only, long-press, or
multi-finger gestures

Complex gestures have a
single-tap alternative

Screen Reader + Touch

Test with VoiceOver (iOS)
and TalkBack (Android)

Ensure swipe navigation
follows logical reading order

Interactive elements
announce role, state, and
label

Motion & Interaction

Motion and animations can
be reduced or disabled

No interaction depends on
device motion (shake, tilt)

Drag-and-drop has a non-
gesture fallback

If an action can9t be completed with simple taps and screen reader gestures, it isn9t
accessible.

"Accessibility is not a step in the process; it is the
process."

Building accessible products requires both automated tools and
human judgment. Use the tools in this guide to catch technical
issues early, then validate with real-world manual testing.

Remember: you're not building for compliance4you're building for
people.

hello@wa11y.io q wa11y.io

mailto:hello@wa11y.io
mailto:claudiakich@wa11y.io
http://wa11y.io/

