& wany.io

The wATly Developer Toolkit

The essential stack for building inclusive products.

Accessibility isn't optional—it's the foundation of great product
development.

@ Use this toolkit during local development, code review,
QA, and before release

30% 70%

Automated Detection Manual Testing

What tools can find What humans must verify




Part 1: Essential Automated Tools
The Daily Drivers

These browser extensions form the backbone of your automated accessibility testing workflow. Each tool catches
different issues, so using them in combination maximizes coverage.

Browser Extensions

axe DevTools [Freemium] The industry standard for automated testing. Integrates

seamlessly with Chrome DevTools and provides detailed
remediation guidance.

WAVE [Free] Visual feedback tool that identifies errors directly in the
browser with inline icons and color-coded alerts.

Accessibility Insights [Free] Guided and automated assessment tool by Microsoft. Excellent
for structured WCAG compliance testing.

Google Lighthouse [Free] Built-in audit tool in Chrome DevTools. Provides accessibility
scores alongside performance and SEO metrics.



https://chromewebstore.google.com/detail/axe-devtools-web-accessib/lhdoppojpmngadmnindnejefpokejbdd
https://wave.webaim.org/
https://accessibilityinsights.io/
https://developer.chrome.com/docs/lighthouse/overview

Color & Code Utilities

Beyond browser extensions, these specialized tools ensure your code and designs meet accessibility standards from
the start.

WebAIM Contrast Checker [Free] The go-to for checking WCAG color ratios. Simple interface for
testing text and background combinations.

Stark [Freemium] Plugin for Figma and Sketch to check contrast and simulate
vision conditions during the design phase.

eslint-plugin-jsx-ally [Free] Static AST checker for React developers. Catches accessibility

issues in JSX before code reaches production.


https://webaim.org/resources/contrastchecker/
https://getstark.co/
https://github.com/jsx-eslint

Screen Readers & Documentation

Testing Software

To truly understand user experience, you must test with the same tools your users rely on. Here are the essential

screen readers across platforms.

NVDA
[Free]

The most popular open-source screen reader for
Windows. Essential for testing desktop web
applications.

nvaccess.org

TalkBack
[Free]

Built-in to Android devices. Critical for mobile app
and responsive web testing.

google.com/accessibility

VoiceOver

[Free]

Built-in to all Apple devices (mac0S/i0S). Test both
desktop Safari and mobile experiences.

apple.com/accessibility

JAWS
[Paid]

Enterprise standard screen reader. Widely used in
corporate and government environments.

freedomscientific.com



https://www.nvaccess.org/download/
https://www.apple.com/accessibility/vision/
https://support.google.com/accessibility/android/answer/6283677
https://freedomscientific.com/

Essential Bookmarks

Keep these authoritative resources handy for standards, best
practices, and technical implementation guidance.

W3C WAI The Ally Project
Official standards body Beginner-friendly quides
for web accessibility. and checklists. Perfect
Home to WCAG guidelines for teams new to

and ARIA specifications. accessibility or looking
w3.org/WAI for quick reference.

allyproject.com

MDN Web Docs

Best technical
documentation for ARIA,
semantic HTML, and
accessibility APIs with
clear code examples.

developer.mozilla.org



https://www.w3.org/WAI/
https://www.a11yproject.com/
https://developer.mozilla.org/

Part 2: Manual Testing Checklist
The "Human" Check (The Other 70%)

ou can't use it without a mouse, it's not done.

Automated tools are powerful, but they can't evaluate user experience. Manual testing reveals the barriers that tools
miss—and those barriers affect real people trying to use your product.

ARIA Usage Guidance
@

K

Prefer Native Test for
HTML When HTML Keep ARIA Accessibility

Use semantic Insufficient Minimal Use screen

elements first Add ARIA to Only add necessary readers and tools

©e.

convey role attributes



Keyboard Testing (No Mouse)

Unplug your mouse and navigate your entire application using only Tab, Shift+Tab, Enter, Space, and Arrow keys. If
you get stuck or lost, your users will too.

Visual Focus

Can you a/ways see where you are? Ensure focus indicators are visible and never suppressed with outline:
none without replacement.

Logical Order

Does tab order match visual reading order? Content should flow naturally from top to bottom, left to right.

No Traps

Can you tab /nand out of every widget? Test modals, carousels, maps, and custom components carefully.

Interaction

Canyou trigger buttons and menus with Enter or Space? All interactive elements must respond to keyboard
input.

Skip Link

Is there a"Skip to Content" link on the first tab? This lets keyboard users bypass repetitive navigation.



Screen Reader & Visual Checks

Screen Reader Basics

Turn on a screen reader and navigate your site with your
eyes closed. Listen critically to what's announced and
how information is structured.

e Headings: Do you skip levels (H1to H4)? Are visual
headings coded as actual heading elements?

e Links: Do links make sense out of context? Avoid
vague phrases like "Click Here" or "Read More."

e Images: Do decorative images stay silent? Do
meaningful images have descriptive alt text?

e Forms: Do fields announce their label and required
status clearly?

Zoom & Reflow

Test how your interface adapts to users who need

larger text or different viewport sizes.

200% Zoom: Is text readable without horizontal
scrolling? Content should reflow naturally.

400% (Mobile): Does the site reflow into a single
column? No content should be hidden or cut off.

Color: Are error messages conveyed by more than
just color? Include text, icons, or other visual
indicators.



The "Gotchas"
What Automated Tools Often Miss

These nuanced issues separate adequate accessibility from excellent user experience. Automated scanners can't
evaluate context, clarity, or user flow—which is why manual testing is critical.

Focus Not Obscured (2.4.11
AA)

Ensure sticky
headers/footers/banners do
not fully cover focused
elements. Use scroll-margin-
top/scroll-padding-top equal
to sticky height; make banners
modal/dismissible.

Test: Tab through with sticky
Ul active (i.e. sticky headers
and overlays); confirm focused
control is at least partly visible.

Redundant Entry (3.3.7 A)

In multi-step flows, prefill or let
users select previously entered
info; allow “same as X".

Test: Confirm no unnecessary
retyping; verify security
exceptions only.

Accessible Authentication
(3.3.8 AA)

Allow password managers &
copy-paste; provide
passkeys/biometrics/magic
links.

Test: Complete login without
memory/transcription; verify
managers fill fields; OTP fields
allow paste.

Target Size Minimum (2.5.8
AA)

Document the 24x24
requirement and exceptions;
keep your 44x44 as preferred.

Test: Sample buttons/links on
mobile and desktop; confirm
size or spacing equivalence.

Consistent Help (3.2.6 A)

Place Help/Contact
consistently (same DOM order
and landmark).

Test: Crawl a sample of pages;
check stable placement/order.



The "Gotchas™
What Tools Often Miss

These are the nuanced issues that separate adequate accessibility from excellent user experience. Automated
scanners can't evaluate context, clarity, or user flow.

—0——0——0—

Error Messages Focus Management Dynamic Content

Are they helpful and specific? Does focus return to the trigger Are "toast" messages and live
Compare "Password must be at button when a modal closes? Or updates announced

least 8 characters with one does it jump back to the top of immediately to screen reader
uppercase letter" to "Error." the page, disorienting the user? users? Use ARIA live regions
Which one helps users appropriately.

succeed?



Mobile Accessibility Checklist

Testing beyond desktop: Ensuring your mobile experience is accessible for all users, including those relying on touch
and assistive technologies.

) s

Touch Targets & Gestures Screen Reader + Touch Motion & Interaction

e Touchtargets are at least e Test with VoiceOver (i0S) e Motion and animations can
L4x44 CSS pixels and TalkBack (Android) be reduced or disabled

e No critical actions rely on e Ensure swipe navigation e Nointeraction depends on
swipe-only, long-press, or follows logical reading order device motion (shake, tilt)
multi-finger gestures e Interactive elements e Drag-and-drop has a non-

e Complex gestures have a announce role, state, and gesture fallback
single-tap alternative label

If an action can't be completed with simple taps and screen reader gestures, it isn't

accessible.



"Accessibility is not a step in the process; it is the
process.”

Building accessible products requires both automated tools and
human judgment. Use the tools in this guide to catch technical
issues early, then validate with real-world manual testing.

Remember: you're not building for compliance—you're building for
people.

& wany.io hello@wally.io & wally.io



mailto:hello@wa11y.io
mailto:claudiakich@wa11y.io
http://wa11y.io/

